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Abstract

As more defense-in-depth protection schemes like Windows Integrity
Control or sandboxing technologies are deployed, threats affecting local
system components become a relevant issue in terms of the overall oper-
ating system user’s security plan. In order to address continuous develop-
ment of Elevation of Privileges exploitation techniques, Microsoft started
to enhance the Windows kernel security, by hardening the most sensitive
system components, such as Kernel Pools with the Safe Unlinking mecha-
nism introduced in Windows 7[19]. At the same time, the system supports
numerous both official and undocumented services, providing valuable in-
formation regarding the current state of the kernel memory layout. In
this paper, we discuss the potential threats and problems concerning un-
privileged access to the system address space information. In particular,
we also present how subtle information leakages can prove useful in prac-
tical attack scenarios. Further in the document, we conclusively provide
some suggestions as to how problems related to kernel address information
availability can be mitigated, or entirely eliminated.

1 Introduction

Communication between distinct executable modules running at different priv-
ilege levels or within separate security domains takes place most of the time, in
numerous fields of modern computing. Both hardware- and software-enforced
privilege separation mechanisms are designed to control the access to certain re-
sources - grant it to modules with higher rights, while ensuring that unathorized
entities are not able to reach the protected data.

The discussed architecture is usually based on setting up a trusted set of
modules (further referred to as “the broker”) in the privileged area, while hav-
ing the potentially malicious code (also called “the guest”) executed in a con-
trolled environment. In order for the low-integrity programs to retain their orig-
inal functionality, the broker usually provides a special communication channel,
through which the guest can make use of certain services implemented by the
broker. While effectively limiting the spectrum of potential action which can
be taken by the client, the approach also guarantees that untrusted code can
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only do as much as the system user or developers really intend to (assuming a
flawless implementation of the trusted code). A basic model of the architecture
is presented on Figure 1. Operating systems, sandboxing and virtualization
technologies all make a good example of computer software taking advantage of
privilege separation.

Figure 1: A typical design of a client-broker privilege separation scheme

Brokers, as regular pieces of executable code, do suffer from regular software
bugs. As a direct consequence of communicating and processing data received
from less-trusted modules, these bugs might often be triggered through a spe-
cially crafted dialogue with one of the clients. Furthermore, since some of these
programming bugs may - and often have - security implications, brokers can be
specifically subject to software vulnerabilities. Given the fact that some secu-
rity flaws can expose a way to accomplish highly-privileged code execution from
within an untrusted client, the overall security architecture can be potentially
circuvmented by exploiting one security issue in a single trusted module.

Despite the usual methods of reducing the amount of software security prob-
lems found in brokers - fuzzing and source code auditing - efforts have been
made to address the consequences of software bugs in a more generic way.
Namely, Microsoft - as well as other operating system vendors - introduced
several anti-exploitation mechanisms, purposed to render some local vulnera-
bilities completely useless, and make it considerably harder to use others. The
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most commonly known security features implemented in Windows are: Stack
Cookies[24], Heap Protection [8] (heap cookies, safe unlinking etc.), Exception-
Handling Protection [7] (SafeSEH, SEHOP etc.), Data Execution Prevention
[21] and Address Space Layout Randomization [6]. The above mitigation tech-
niques can be divided into three, general types:

1. Prevention of undesired actions

2. Integrity check of the internal state

3. Randomization of the internal state

The first group of mechanisms is designed to stop every effort made to perform
actions, which are otherwise considered undesired or suspicious (e.g. code ex-
ecution from non-executable pages). The second group aims to examine if the
program’s internal integrity has been damaged, which usually implies that an
attack against a security issue is in progress. Both types of mitigations work
in a completely deterministic manner, as they only ensure that no potentially
harfmul operation are, or were performed on the local machine.

As opposed to the first two groups, the sole purpose of internal state ran-
domization is not to detect vulnerability exploitation in itself, but rather to
make the application’s execution path dependent on a random factor, ideally
unable to be guessed by a potential attacker. This very approach is taken by
Address Space Layout Randomization, which deliberately relocates executable
images to random locations, thus making it difficult or impossible to build a
reliable exploit by using hard-coded addresses.

Since the security level of a program often relies on how hard it is for the
client to predict the broker’s internal state, it becomes obvious that the lat-
ter should never reveal more information, than actually required for a client
to function properly. The desire of memory layout information can be easily
observed in the context of web-browsers, where any kind of information leakage
to javascript code is considered a legitimate and valuable security vulnerability.

Interestingly, Microsoft does not seem to follow the discussed principle in
terms of user- and kernel- mode transitions. The operating system includes
specific address leaks as parts of its regular functionality, and even provides
documented API interface for some of these services. In our opinion, this quasi-
correct behavior is a result of a lack of an official policy as of how important
it is to keep kernel addresses secret. In order to mitigate the threats caused
by careless ring-0 address management, we conclusively present some steps,
which can be taken by Microsoft to further eliminate the disclosure of sensitive
addresses, while retaining the old functionality.

The rest of the paper is organized as follows. In Section 2, we review the dif-
ferent types of addresses made available to regular user-mode applications, and
what is their specific meaning in the operating system. In Section 3, we discuss
the usages of the revealed addresses, in terms of practical kernel exploitation
scenarios. In Section 4, we propose ways of reducing the impact implied by
memory layout information leakages, as well as possible fixes on both hardware
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and software level. Finally, in Section 5 we provide thoughts and suggestions on
the future of kernel address information availability, and in Section 6 we provide
a conclusion of the paper.

2 Address space information sources

In this section, we review the existing means, by which regular programs can
obtain information regarding the kernel memory layout.

2.1 Windows System Information classes

Since the very early days of the Windows NT-family system development, the
kernel provided a centralized service, which would be used to query any type
of information regarding the current system state, from both user- and kernel-
mode. This specific system call is named NtQuerySystemInformation (see List-
ing 1), and currently manages more then 80 information classes (specified by
the SYSTEM INFORMATION CLASS enum, defined in winternl.h).

Listing 1: NtQuerySystemInformation definition

NTSTATUS
STDCALL
NtQuerySystemInformation(
SYSTEM_INFORMATION_CLASS SystemInformationClass,
PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength);

The current amount of possible query types is caused by a legacy policy - once
introduced, probablynone of the enumeration members has ever been removed
from the service implementation. The avaiable information types include, but
are not limited to the following items:

• Basic system and machine characteristics,

• System performance,

• Date / Time,

• State of processes and threads,

• Object Manager information,

The service does not require any specific privileges from the requestor, thus
every information class is available to every program running on the operating
system. Consequently, the routine makes a great source of utile information,
which can be used by a local attacker, previous to performing an Elevation of
Privileges attack against the machine.
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In further subsections, we review the particular information classes, that can
be used to obtain a solid amount of kernel memory addressing details. We will
briefly characterize the internal structures used to describe the system state,
before moving to specific scenarios, in which the obtained information can turn
out to be of great value.

2.1.1 SystemModuleInformation

The information class is used to retrieve basic data regarding all device drivers
(including core Windows ring-0 modules) presently loaded into kernel space.
Should the service succeed, the output buffer contains a list of the SYSTEM MODU-
LE INFORMATION structures (see Listing 2).

Listing 2: Kernel module descriptor

typedef struct _SYSTEM_MODULE_INFORMATION
{
ULONG Reserved[2];

PVOID Base;

ULONG Size;

ULONG Flags;
USHORT Index;
USHORT Unknown;
USHORT LoadCount;
USHORT ModuleNameOffset;

CHAR ImageName[256];

} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;

Among other items, three structure fields are particularly interesting: Base,
Size and ImageName. As their names indicate, these fields represent the image
base (IMAGE OPTIONAL HEADER.ImageBase), size (IMAGE OPTIONAL HEA-
DER.SizeOfImage) and file name of a single kernel module. In other words,
it is possible for any user to create a complete map of device driver memory
placement across the privileged address space. An exemplary output snippet of
a simple utility, making use of the discussed information class, is presented in
Listing 3.

Listing 3: A custom driverquery utility output

Name: ntoskrnl.exe, ImageBase: 0x8281c000, ImageSize: 0x003ab000
Name: hal.dll, ImageBase: 0x82bc7000, ImageSize: 0x00033000
Name: kdcom.dll, ImageBase: 0x8a809000, ImageSize: 0x00007000
Name: PSHED.dll, ImageBase: 0x8a810000, ImageSize: 0x00011000
Name: BOOTVID.dll, ImageBase: 0x8a821000, ImageSize: 0x00008000
Name: CLFS.SYS, ImageBase: 0x8a829000, ImageSize: 0x00041000
Name: CI.dll, ImageBase: 0x8a86a000, ImageSize: 0x000e0000
[...]

It is important to note that Microsoft created a documented interface around
the SystemModuleInformation class, and incorporated it into the Process Status
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API [15]. Namely, the operating system supports the following official routines
to examine information about device drivers present in kernel-mode:

• EnumDeviceDrivers

• GetDeviceDriverBaseName

• GetDeviceDriverFileName

Although the kernel-oriented part of PSAPI only allows to enumerate drivers’
base addresses and names, it is remarkable that Microsoft decided to make a
part of the SystemModuleInformation functionality available to regular devel-
opers; it might potentially have future consequences in terms of legacy, if the
vendor starts making efforts towards reducing the kernel address accessibility
surface.

2.1.2 SystemHandleInformation

The information class was designed to provide general information about all
HANDLE values (and the associated objects) from all processes present in the sys-
tem. On output, the caller receives an array of the SYSTEM HANDLE INFORMA-
TION structures (see Listing 4), each maintaining data about a single numeric
resource ID.

Listing 4: HANDLE descriptor

typedef struct _SYSTEM_HANDLE_INFORMATION {
ULONG ProcessId;
UCHAR ObjectTypeNumber;
UCHAR Flags;

USHORT Handle;

PVOID Object;

ACCESS_MASK GrantedAccess;
} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

The descriptor contains every relevant HANDLE characteristic, hence making
an invaluable source of information. Most importantly, the kernel provides the
requestor with an address of the object body, referenced by the given HANDLE.
Thanks to the functionality, it becomes possible to enumerate all handles man-
aged by the operating system, including processes with privileges higher than
the original information requestor.

One potential problem related to the original HANDLE descriptor structure,
is the fact that the Handle field is declared as USHORT, implying 16-bit storage
width. Considering that the handle growth incremental on Windows is four, and
a single process can potentially own more than 16384 handles, the structure lacks
the upper 16 bits of numeric handle representation. In certain scenarios - such as
using objects to spray the kernel address space - this issue can render the overall
technique useless, by making it impossible to distinguish numeric HANDLE val-
ues of, for example, 0x0007C and 0x1007C. In order to avoid the problem, we
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advice to use the SystemExtendedHandleInformation class, together with the
SYSTEM HANDLE INFORMATION EX structure (see Listing 5).

Listing 5: Extended HANDLE descriptor

typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX {

PVOID Object;

HANDLE UniqueProcessId;

HANDLE HandleValue;

ACCESS_MASK GrantedAccess;
USHORT CreatorBackTraceIndex;
USHORT ObjectTypeIndex;
ULONG HandleAttributes;
PVOID Reserved;

} SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX, *
PSYSTEM_HANDLE_TABLE_ENTRY_INFO_EX;

In Listing 6, an exemplary output snippet of the handlequery utility is pre-
sented.

Listing 6: First records of the SystemExtendedHandleInformation output

[0]: PID: 0x00000004, Handle: 0x00000004, Object: 0x84a43a90
[1]: PID: 0x00000004, Handle: 0x00000008, Object: 0x8bc58158
[2]: PID: 0x00000004, Handle: 0x0000000c, Object: 0x8bc13e68
[3]: PID: 0x00000004, Handle: 0x00000010, Object: 0x8bc11658
[4]: PID: 0x00000004, Handle: 0x00000014, Object: 0x8bc72e38
[...]

2.1.3 SystemLockInformation

Upon invoking NtQuerySystemInformation with this information class, the
operating system returns a list of lock descriptors, contained in the SYSTEM LO-
CK INFORMATION (see Listing 7). The locks are otherwise known as ERESOURCE
structures, and are (only) available to kernel-mode, to implement exclusive/shared
synchronization. For more information about the mechanism, see Introduction
to ERESOURCE Routines[17], or specifically, the ExInitializeResourceLite
routine documentation.

Listing 7: ERESOURCE descriptor

typedef struct _SYSTEM_LOCK_INFORMATION {

PVOID Address;

USHORT Type;
USHORT Reserved1;
ULONG ExclusiveOwnerThreadId;
ULONG ActiveCount;
ULONG ContentionCount;
ULONG Reserved2[2];
ULONG NumberOfSharedWaiters;
ULONG NumberOfExclusiveWaiters;

} SYSTEM_LOCK_INFORMATION, *PSYSTEM_LOCK_INFORMATION;
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2.1.4 SystemExtendedProcessInformation

On the Windows platform, the OS allocates two distinct stacks for every reg-
ular thread: a user- and kernel-mode stack. Intuitively, each of them is used
within the corresponding privilege level, thus protecting the more privileged
execution flow from any ring-3 disruptions. Although not being able to op-
erate on the kernel stack, user-mode code can obtain its base address and
size through the SystemExtendedProcessInformation information class. More
specifically, the discussed class can be used to retrieve very detailed data re-
garding all processes and threads running on the system (described by the
SYSTEM PROCESS INFORMATION and SYSTEM THREAD INFORMATION together
with SYSTEM EXTENDED THREAD INFORMATION structures, respectively).

Listing 8: Extended thread descriptor

typedef struct _SYSTEM_EXTENDED_THREAD_INFORMATION
{
SYSTEM_THREAD_INFORMATION ThreadInfo;

PVOID StackBase;

PVOID StackLimit;

PVOID Win32StartAddress;
PVOID TebAddress;
ULONG Reserved1;
ULONG Reserved2;
ULONG Reserved3;

} SYSTEM_EXTENDED_THREAD_INFORMATION, *
PSYSTEM_EXTENDED_THREAD_INFORMATION;

2.2 Win32k.sys Object Handle Addresses

Similarly to the Windows kernel executive, the major graphical device driver
- win32k - also manages its own per-session handle table for USER and GDI
handles. The table is initialized in win32k!Win32UserInitialize, and
stored at the base address of a shared section, win32k!gpvSharedBase. This
section is subsequently mapped into every GUI process running in the system,
making it possible for processes to access the handle table without resorting to
a system call. Mapping the shared section into user-mode memory areas was
considered beneficial in terms of general system effectiveness, efficiently reducing
the number of context and privilege switches required to perform graphical
operations.

The address of the shared section can be obtained by numerous means, e.g.
by scanning all sections mapped in the local memory context, or through an
exported user32!gSharedInfo symbol (present only on Windows 7).

A single entry in the handle table is represented by a HANDLENTRY structure,
as shown in Listing 9. Among other fields, the phead and pOwner members
contain the address of the object, and the handle owner (either an ETHREAD or
EPROCESS pointer).
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Listing 9: Win32k handle table entry

typedef struct _HANDLEENTRY {

struct HEAD* phead;

VOID* pOwner;

UINT8 bType;
UINT8 bFlags;
UINT16 wUniq;

}HANDLEENTRY,*PHANDLEENTRY;

As mentioned, it is possible to enumerate the win32k handle table by just
operating on the local process memory, without resorting to a single system
call (except for the one required to convert the program to a GUI process).
Also, as a direct consequence of the shared section scope, one application can
list all objects created within the same session. For more information as for
how to correctly find and manage the handle table, see Kernel Attacks Through
User-Mode Callbacks [22].

2.3 Win32k.sys System Call Information Disclosure

As discovered several months prior to writing the paper, more then twenty
win32k system call handlers were leaking kernel-mode addresses to user-mode
through the return value. As it later turned out, the information disclosure
was caused by invalid definitions of the flawed services. Instead of declaring the
return value to have the same bit-width as the native processor word (32 or 64,
depending on the platform), the definitions of several system calls were similar
to those presented in Listing 10 and 11.

Listing 10: Exemplary win32k service with no return value

VOID NtUserRandomService( [...] );

Listing 11: Exemplary win32k service with a narrow return value type

USHORT NtUserRandomService( [...] );

Consequently, the compiled routines would either leave the EAX/RAX reg-
ister (through which return values are passed in STDCALL) unitinialized, or only
initialize the least significant 16 bits, leaving the remaining part unchanged.

When no value is explicitly returned, the actual return value depends on the
last EAX/RAX register modification, prior to leaving the system call. Hence, it
is potentially possible that such an Information Disclosure would reveal stack /
heap data or random kernel memory addresses. As further investigation showed,
the affected functions’ epilogues had usually a very similar format, presented in
Listing 12.

9



Listing 12: A typical epilogue of a win32k system call handler

.text:BF853847 call _LeaveCrit@0

.text:BF85384C pop esi

.text:BF85384D pop ebp

.text:BF85384E retn 0Ch

The internal LeaveCrit function initializes EAX/RAX with the address of
the current thread’s ETHREAD structure. Despite this one type of address, it is
also possible to retrieve a pointer to the local W32THREAD structure, through five
routines with a slightly different epilogue. For more information about the issue,
see Subtle information disclosure in WIN32K.SYS syscall return values[11].

Even though both kernel-mode addresses revealed through invalid return
types can also be obtained by other means, this behavior is strictly coninciden-
tal, and the operating system developers are very unlikely to have any control
over the nature of the disclosed information. Therefore, the current low impact
of such subtle leakages might grow up to a serious problem in the future, espe-
cially in case of steps being taken to reduce the amount of kernel address space
information available to unprivileged applications.

2.4 Descriptor Tables

In this section, we review the types and ways of reaching kernel addresses related
to Descriptor Tables, a crucial part of the Intel x86 and x86-64 CPU architecure,
on the Windows platform.

2.4.1 SIDT, SGDT

Every Intel-architecture processor (or a single core) makes extensive use of three
Descriptor Tables:

• Interrupt Descriptor Table

• Global Descriptor Table

• Local Descriptor Table

The Interrupt Descriptor Table consists of 255 entries, each associating an ex-
ception or interrupt vector with a gate descriptor for the procedure or task used
to service the associated exception or interrupt.

The Global Descriptor Table represents a set of 8-byte entries, each describ-
ing a Code Segment, Data Segment, TSS, Call-Gate or LDT. The table is an
essential component of segmentation, the first step in address translation. It also
plays an important role in terms of privilege separation. Both of the discussed
structures have a global system scope, and once initialized, they almost never
change during Windows run time. Local Descriptor Table, on the other hand,
is a local equivalent of GDT. It is an optional structure with per-process scope,
which can be set up by the kernel on demand [26].
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The Interrupt and Global Descriptor Tables are localized through virtual
addresses. These addresses are stored in dedicated registers called IDTR and
GDTR, respectively. Write access to these registers is accomplished through priv-
ileged LIDT (Load IDT ) and LGDT (Load GDT ) instructions. Trying to execute
one of them within a higher ring results in an immediate #GP(0) exception.
On the other hand, reading the registers’ values is not restricted by any means,
and can be achieved through corresponding SIDT and SGDT instructions. As
Intel 64 and IA-32 Architectures Software Developer’s Manual states [2]:

SIDT is useful only by operating-system software. However, it can
be used in application programs without causing an exception to be
generated.

In order to retrieve the addresses of Descriptor Tables for all active processors
or cores, it is necessary to use the SetThreadAffinityMask API. It is also
worth to note, that the SIDT instruction functionality has already been used in
the past to detect the presence of VMM environment, as presented by Joanna
Rutkowska in 2004 [5].

2.4.2 GDT Entries

In spite of the Global Descriptor Table address availability alone, Windows
also allows to obtain and examine particular table entries. The functionality is
operable through a documented GetThreadSelectorEntry function, which
is internally implemented using NtQueryInformationThread together with
the ThreadDescriptorTableEntry information class.

Index Type Base Limit DPL Notes
5 tss 80042000 20AB 0 Task State Segment (per-

processor)
6 data FFDFF000 FFF 0 Windows Processor Control

Region (per-processor)
9 ldt 86811000 7 0 optional custom LDT (per-

process)

Table 1: Kernel-mode entries in a typical Windows Global Descriptor Table

Since the operating system puts no limitation on the segment selectors being
queried or the completness of GDT information, it is possible to scan the overall
table, collecting kernel-mode addresses. Table 1 (see a complete version of the
table [13]) presents entries containing kernel-mode base addresses. As the table
shows, GDT contains a total of three entries, which might prove useful for a
potential attacker. The first two are present regardless of the current system
state, as they are essential for correct CPU (Task State Segment), and system
(Processor Control Region) performance. As previously mentioned, the third

item (9th index) is not initialized by default; it is only created (and remains
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active throughout the process lifespan) upon creating the first LDT entry with
a dedicated service.

3 Exploitation usability

In this section, we focus on certain software vulnerability classes and scenarios,
in which each of the disclosed type of address may come in handy.

3.1 SystemModuleInformation class

Free access to information concerning all executable images residing within the
boundaries of kernel virtual address space makes it a powerful tool in numerous
exploitation contexts. This is primarily caused by the diversity of data types
present in a single PE file - executable code, function pointers, static variables,
large arrays, exported symbols - each of which represents a certain value, de-
pending on a given vulnerability characteristics.

3.1.1 Pre-exploitation payload initialization

The official user-mode Windows API interface is split into tens of separate
libraries, such as kernel32.dll, user32.dll, and so on, depending on the
nature and functionality of a certain function set. As opposed to ring-3, a
great majority of documented Windows kernel API is located inside the primary
OS core - ntoskrnl.exe (or its equivalent); while the other part (such as
KeRaiseIrql) resides in HAL.DLL.

Listing 13: A pseudo-code GetKernelProcAddress implementation

LPVOID GetKernelProcAddress(PCHAR Module, LPCSTR lpProcName)
{
HMODULE ModuleHandle;
FARPROC ProcPointer;

if((ModuleHandle = LoadLibraryEx(Module, NULL,
DONT_RESOLVE_DLL_REFERENCES)) == NULL)

return NULL;

if((ProcPointer = GetProcAddress(ModuleHandle, lpProcName) == NULL
)

{
FreeLibrary(ModuleHandle);
return FALSE;

}

FreeLibrary(ModuleHandle);

return (ProcPointer - ModuleHandle + GetDriverImageBase(Module));
}
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Thanks to such design, it becomes possible to obtain the virtual address of
any Windows kernel routine, being part of the documented DDK API. The task
can be achieved, by combining the SystemModuleInformation functionality with
popular image management routines like LoadLibraryEx or GetProcAddress
(see Listing 13).

Since a typical payload would usually take advantage of the kernel API
to load an arbitrary driver (nt!ZwLoadDriver) or elevate process privileges
(nt!ZwOpenProcessToken, nt!ZwDuplicateToken and other), it is often
best to initialize appropriate pointers in the pre-exploitation stage. This way,
any accidential failure at this point can be cleanly processed while still on the
ring-3 privilege level.

3.1.2 Return-Oriented Programming

Return-Oriented Programming - previously known as ret2libc - is a common
exploitation technique, capable of circuvmenting the Data Execution Prevention
mitigation technology in certain scenarios. The method requires a controlled
stack (as a consequence of a typical stack buffer overflow, or upon crafting
the stack pointer), and relies on a chained execution of tiny assembly code
snippets (referred to as gadgets, ending with execution-control instructions, such
as RETN). In most cases, exploits make use of gadgets residing in executable
images loaded in the local address space, thus the technique is considered a
sophisticated form of code reuse.

Taking advantage of techniques such as ROP is usually motivated with lack
of control over the vulnerable process address space. On the other hand, Eleva-
tion of Privilege attacks assume code execution by definition; a malicious user is
usually able to operate within a restricted environment (e.g. process, or user ac-
count). Therefore, it is possible to entirely control the user-mode address space
during kernel exploitation. Provided that the affected kernel routine executes
in the same context as its ring-3 trigger, payload can be successfully executed
without the need to control privileged memory areas.

Interestingly, in May 2011 Intel announced a new anti-exploitation tech-
nology called Supervisor Mode Execution Protection, implemented on the CPU
level [3] [4]. The general concept of the upcoming feature is to refuse ring-0 ex-
ecution of code located in memory pages marked as accessible from user-mode,

upon setting the 20th bit in the CR4 register. Security researchers have al-
ready presented possible ways of subverting the protection on both Linux [1]
and Windows [14] platforms.

When code execution from user-mode memory is rendered impossible, Re-
turn Oriented Programming might turn out to become a feasible way of ex-
ploiting local Windows kernel vulnerabilities. Should it happen, the ability to
retrieve base addresses of PE images present in ring-0 would be a crucial part
of the exploitation process. What is even more, as long as the device driver
layout is available to untrusted entities, no anti-exploitation measure can stop
the attacker from taking over the machine, once the kernel stack is controlled.
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3.1.3 Static function pointers

Amongst other classes of kernel security flaws, the Write-What-Where condition
is one of the most common, and easiest to take advantage of. It can occur as a
direct consequence of insufficient input pointer validation, an implicit result of a
pool-based buffer overflow, and in several other circumstances (e.g. referencing
pointers from the NULL memory page). As the name indicates, the condition
allows unprivileged code to write a controlled value (what) into user-controlled
kernel address (where).

In most scenarios, the condition can be observed in a four-byte (or eight
for Intel x86-64) form, i.e. it is possible to write an operand sized the same
as the native CPU word. In order to turn the condition into privileged code
execution, it is necessary to overwrite a value, which (directly or implicitly)
affects the kernel execution path. Extensive research has been performed in
this field [25] [20], resulting in the invention of several effective ideas. One of
the most widely known technique, is to overwrite a function pointer, located at a
constant offset relative to an exported kernel symbol: nt!HalDispatchTable
+ sizeof(ULONG PTR). Upon replacing the original value with the payload
virtual address, privileged code execution can be then triggered through the
NtQueryIntervalProfile service, which invokes the following call stack:

• nt!NtQueryIntervalProfile

• nt!KeQueryIntervalProfile

• [nt!HalDispatchTable + sizeof(ULONG PTR)]

In general, device driver images contain a tremendous amount of critical
spots (such as function pointers), which can be used to compromise a machine
through vulnerable kernel code and a Write-What-Where condition, including
optimized switch branch tables, static function pointers or dispatch tables. For
as long as device drivers’ image bases are not protected from unathorized access,
the exploitation of a majority of ring-0 security flaws will remain trivial.

3.2 SystemHandleInformation class

The availability of information about objects with assigned numeric identifiers
(handles) makes a great source of data regarding the current operating system
state. Furthermore, due to the nature and complexity of some of the object
types, it is often feasible to use them as a direct post-exploitation stager.

3.2.1 Write-What-Where condition

Similarly to executable modules, some object structures abound in execution-
critical fields, which might be picked out during a Write-What-Where condition
exploitation. A list of potential object types includes Timers (KTIMER), Threads
(KTHREAD), or APC Reserve Objects (KAPC structure, Listing 14) [12].
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Listing 14: Asynchronous Procedure Call descriptor

nt!_KAPC
+0x000 Type : Int2B
+0x002 Size : Int2B
+0x004 Spare0 : Uint4B
+0x008 Thread : Ptr32 _KTHREAD
+0x00c ApcListEntry : _LIST_ENTRY

+0x014 KernelRoutine : Ptr32 void

+0x018 RundownRoutine : Ptr32 void
+0x01c NormalRoutine : Ptr32 void
+0x020 NormalContext : Ptr32 Void
+0x024 SystemArgument1 : Ptr32 Void
+0x028 SystemArgument2 : Ptr32 Void
+0x02c ApcStateIndex : Char
+0x02d ApcMode : Char
+0x02e Inserted : UChar

3.2.2 Payload storage

Depending on the object design and purpose, user-mode applications may have
a varying degree of control over the object’s structure contents. Remarkably,
several objects (such as APC Reserve Objects [10]) allow as much as sixteen
bytes of controlled memory placed within the object body. Because of the
unlimited access to object address information, it is potentially possible to use
the objects as an effective kernel-mode payload container (see Figure 2).

Figure 2: Exemplary KAPC structure chain, storing 33 bytes of payload in three
chunks of data

One disadvantage of the proposed technique is the fact that the user-controlled
shellcode is located inside the kernel pool areas, which are marked as non-
executable. Fortunately, APC Reserve Objects (as well as a majority of Win-
dows objects) are allocated from Non-Paged Pool which - according to MSDN
[16] - is excluded from the DEP protection layer.

DEP is also applied to drivers in kernel mode. DEP for memory
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regions in kernel mode cannot be selectively enabled or disabled. On
32-bit versions of Windows, DEP is applied to the stack by default.
This differs from kernel-mode DEP on 64-bit versions of Windows,
where the stack, paged pool, and session pool have DEP applied.

3.2.3 Kernel Pool Feng Shui

Analogically to other types of computer software (e.g. web browsers) allowing
attacker-controlled code execution (e.g. javascript) and partial control over the
internal state of the broker’s memory allocator (user-mode heap), the Windows
kernel also makes it possible for unprivileged application to affect the pools’ (an
equivalent of ring-3 heaps) layout. This particular capability can prove espe-
cially useful, when dealing with the Use-after-free vulnerability class. Moreover,
crafting a specific allocations’ layout has also been shown to come in handy, in
terms of circuvmenting new kernel security features introduced in Windows 7,
such as Safe-Unlinking [18] [23].

Although little research has been performed in the field of precise kernel pools
control, we believe that the subject will become an important point of security
researchers’ interest, as new anti-exploitation technologies are introduced in the
Windows kernel.

3.3 SystemLockInformation

No attacks or exploitation techniques related to the ERESOURCE structure ad-
dresses are publicly known. Because of the fact that the Lock synchronization
mechanism is only operable from ring-0, we consider the information class hardly
applicable in the context of Elevation of Privileges attacks.

3.4 Kernel-mode stacks

As the kernel-mode stack is a crucial part of the ring-0 execution path, it is a
perfect candidate for a Write-What-Where condition target. Having structures
like KTRAP FRAME or stack frames located within a given thread’s privileged
stack, it is possible to hijack ring-0 execution by overwriting a return-address,
saved CS: register within the trap frame, or other sensitive data.

Additionally, the kernel stack can play the role of a data container [9]. This
is made possible thanks to the fact, that several Windows services allow an
extensive amount of user-mode bytes to be moved to a local stack buffer (up to
4096 bytes). Since all kernel stacks are allocated from non-pageable memory,
the above behavior can be made use of in most scenarios scenario, regardless of
the vulnerable code IRQL.

Generally speaking, the availability of kernel-mode stack bases is not only
useful in terms of generic exploitation, but also turns out to be of great value
while evaluating more peculiar types of issues, which are highly dependent on
the stack itself (e.g. uninitialized local variable dereferences).
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3.5 Win32k.sys shared sections

By mapping the win32k.sys shared section into user-mode, the graphical
module makes all (session-wide) user / gdi objects’ addresses visible to regular
applications. Although the information leakage doesn’t have any direct security
implications, a recent research on a new win32k.sys vulnerability vector –
user-mode callbacks – has shown that it can heavily simplify the exploitation of
the Use-after-free vulnerability class.

Since the type of information revealed by the memory mapping is analogous
to the SystemHandleInformation class, these two information disclosure cases
represent a similar degree of usability. The objects managed by kernel-mode
Windows subsystem are also believed to be applicable in Write-What-Where and
Kernel memory spraying attacks. No specific advantages of using win32k.sys
mechanisms instead of the Windows kernel ones are known to the authors.

3.6 Win32k.sys return values

At the time of writing this paper, it is possible to only obtain the addresses
of two structures, assigned to the current thread: KTHREAD and W32THREAD.
The first one is equivalent to the current thread’s object address, which can
be read using SystemHandleInformation; the second one is accessible through
the local Thread Environment Block structure. The possible applications of a
thread object are discussed in the adequate section, while considering the fact
that the latter structure is undocumented and hardly explored, we believe it to
be unsuitable for kernel exploitation purposes.

3.7 IDT, GDT and LDT

All of the three primary Descriptor Tables consist of bytes representing virtual
addresses and privilege level indicators. Consequently, they make an excellent
target for Write-What-Where attacks. Several ways of altering the GDT and
LDT structures have been described in the GDT and LDT in Windows ker-
nel exploitation paper [13], while a number of other ways of poking with the
Protected Mode tables are believed to exist.

3.7.1 TSS, PCR

As a direct outcome of the fact that particular GDT entries can be queried by
user-mode code, they could be also potentially used to elevate the user’s privilege
level. In regard to TSS, vulnerable ring-0 code could be used to overwrite parts
of the CPU context (such as SegCs or EFLAGS.IOPL), or modify the I/O
Access Bit Mask in such a way, that direct I/O communication with the machine
components are available from within user-mode.
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4 Mitigations

In this section, we evaluate ways of mitigating the threats incurred by informa-
tion disclosure issues described in Section 2.

4.1 Windows Kernel Information Classes

Due to the fact that the NtQuerySystemInformation classes, revealing ker-
nel address space information, were implemented purposedly and as a feature,
they cannot be thought of as regular vulnerabilities. In order to reduce the
potential security impact of their functionality, we propose four solutions which
we believe might be successfully adopted by Microsoft.

1. Sustain the overall information classes’ functionality, except for filling the
individual fields, containing kernel-mode information. The concept could
be implemented relatively easily in the context of undocumented services;
however, taking such a step would also render the device driver-oriented
part of the PSAPI interface useless, as it is mostly based on image base
addresses.

2. Restrict the access to certain information classes, by introducing an addi-
tional check on the current process security token (e.g. a SeTcbPrivilege
requirement). Consequently, only programs with administrative rights
would be allowed to query for sensitive kernel information, while making
it impossible for restricted users to obtain any of the classified data.

One major disadvantage of the method is the fact that even though it
would successfully decrease the amount of data during an Elevation of
Privileges attack, it would still be feasible to “attack” a 64-bit kernel
as a privileged user (administrator), in order to load an unsigned driver
into kernel space (a.k.a. admin-to-kernel escalation, or Driver Signature
Enforcement bypass).

3. Similarly, limit access to sensitive classes by ensuring that only ring-0
callers (i.e. kernel modules) can obtain information regarding kernel ad-
dresses. The task could be successfully accomplished by examining the
PreviousMode value, which represents the CPL of code running previ-
ous to the NtQuerySystemInformation system call.

The solution is equivalent to the first concept on 32-bit platforms, where
administrative privileges imply the ability to load arbitrary device drivers.
As previously mentioned, the situation is roughly different on the 64-bit
Windows editions, where only digitally signed modules can be loaded into
kernel space, unless another option was chosen during the system boot
process. Therefore, the discussed method can be considered even more
restrictive than the previous one.
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4. Entirely cut out the unsafe functionality from the system information
service, returning STATUS NOT IMPLEMENTED in response to any of the
four requests regarding kernel address space information.

All of the above suggestions assume more restrictive requirements concern-
ing the availability of several types of information. Although each of them
would result in the desired effect, the real problem is legacy and cross-system
compatibility. Formally, Microsoft could modify the behavior of internal, undoc-
umented classes as long as it would not interfere with the vendor’s user-mode
applications. As it turns out, however, it is very likely that some third-party
Windows applications would cease to work after applying the proposed security
enhancements. This, in turn, might cause problems much more serious that the
benefits of a potentially increased kernel security level.

What is more, one of the blamed information classes - SystemModuleInfo-
rmation - is currently utilized as a part of a documented interface, called
PSAPI. This fact makes it even harder for the OS developers to make any
move, since meddling in an official, established system interface is not a desir-
able spot. All things considered, we believe that the real future of the awkward
system information service will depend on the application compatibility extent
Microsoft is willing to give away in lieu of kernel address space secrecy.

4.2 Win32k.sys Handle Table information

As mentioned before, the address space information leakage related to win32k.sys
is a direct consequence of the current Windows USER/GDI implementation, and
numerous efficiency optimizations present therein. The only possible way of ob-
structing access to graphical objects’ address information would be to entirely
re-design the current windowing architecture, and implement parts of several
crucial system modules (user32.dll, win32k.sys) from the very beginning.
Because of the complexity and potential difficulties related to such an operation,
it is highly unlikely that Microsoft will take such a step in existing Windows
editions. However, we believe that it might be feasible to apply several ma-
jor improvements to the current graphical design in the upcoming Windows
platforms, as it suffers from other severe architectural problems and issues, as
presented by Tarjei Mandt [22].

4.3 Interrupt and Global Descriptor Table

The information disclosure accessible through the SIDT and SGDT instructions
is entirely a matter of the CPU architecture, and is completely unrelated to the
operating system intricacies (e.g. it works the same way on the Windows and
Linux platforms). Accordingly, the problem must be dealt with on the hardware
level.

Although very intuitive and presumably easy to implement, moving the two
discussed instructions into the privileged group would probably not be the best
option, due to legacy reasons. Instead, we believe that the CPU would ideally
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leave the decision of whether SIDT and SGDT should be available to user-mode
or not, to the operating system itself.

A similar approach was taken in terms of protecting ring-0 execution flow
from being redirected into user-mode memory pages. Namely, Intel has added
a new bit called SMEP-enable in the CR4 register (only controllable by the
operating system). Upon setting the flag, the execution of CPL=0 from memory
write-able from CPL=3 causes an exception to be generated.

If CR4.SMEP = 1, instructions may be fetched from any linear ad-
dress with a valid translation for which the U/S flag (bit 2) is 0 in at
least one of the paging-structure entries controlling the translation.

We suggest adding an analogous flag, controlling the availability of IDT and
GDT addresses in user-mode, into the CR4 register. Such a bit (e.g. CR4.DTAP,
as in Descriptor Table Address Protection) would prevent non-privileged code
from obtaining the tables’ addresses, when set; the original CPU behavior would
not be affected otherwise. Such a solution would allow the system developers
to assess the benefits and risks related to the Descriptor Tables’ address ac-
cessibility, and choose a corresponding setting. Currently, we are not aware of
any measures, which could be taken by Microsoft to address the problem on a
software level.

4.3.1 GDT entries

At the time of writing this paper, all GDT and LDT items can be retrieved
by every application, through the GetThreadSelectorEntry API. As the
function’s documentation (Remarks section) states:

Debuggers use this function to convert segment-relative addresses to
linear virtual addresses. The ReadProcessMemory and WritePro-
cessMemory functions use linear virtual addresses.

the function was primarily designed to translate segment selectors into their
base addresses, which would make it possible for a debugger to operate on
linear, virtual addresses. Due to the fact that user-mode code can only reference
memory within user-mode addressing boundaries, the real API’s functionality
ends on ring-3 segments (most often, the FS: segment translation, being the
only standard segment with base address other than zero).

Considering the circumstances, we advice that the allowed output of the API
function should be reduced to entries with the DPL field set to 3. In a more gen-
eral scenario, the ThreadDescriptorTableEntry information class (which
GetThreadSelectorEntry is based on) would be re-implemented so that it
is allowed to only return entries, whose DPL is greater or equal to the previous
mode CPL. Thanks to such approach, device drivers would still be able to make
use of kernel segment information, while preventing regular applications from
requesting the data.
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4.4 Miscellaneous address leaks

In spite of kernel address space information available through documented and
undocumented services or certain system architecture characteristics, unintended
leakages of information have also been shown to occur. Although eliminating
all information disclosure issues is very unlikely, we are certain that operating
system vendors, or specifically Microsoft, need to take such bugs seriously and
fix them accordingly.

5 Remarks

As we have shown in the paper, Windows kernel address space information is an
invaluable source of data, making the exploitation of ring-0 vulnerabilities reli-
able, and relatively easy for a potential, local attacker. This kind of information
can be obtained in a variety of ways, starting from well-documented WinAPI
routines, up to incomplete return values of graphical system calls. We believe
that the current situation is primarily caused by the fact that Microsoft has not
had any official policy concerning the disclosure of kernel-related information for
years of the system development. Since local kernel attacks were rarely observed
and reported in the past, there was no need to establish any rules on what and
where kernel addresses could be passed down to user-mode. As ring-0 security
is continuously gaining more attention from the security professionals, it now
becomes important to state the formal rules, and fix the numerous architectural
errors introduced thorough the years of Windows NT development. Although
it is clear that kernel address space protection is not an ultimate remedy to
successful exploitation of device driver vulnerabilities, it is a big step in terms
of overall system security reformation. Remarkably, the Linux kernel developers
seem to follow the basic rules of kernel address space information security, as
Information Disclosure vulnerabilities of that kind are usually treated seriously,
and patched within a reasonable period of time.

6 Conclusion

In this paper, we have discussed the many ways of retrieving kernel space ad-
dresses of various, internal system components. Furthermore, we have shown
how to practically implement each of the presented techniques, and how most of
them can be successfully employed during a local Elevation of Privileges attack.
In order to make it significantly harder to make of kernel-mode security flaws, we
conclusively suggested several mitigation techniques and concepts, which could
be used to reduce the address space information surface.
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